问题
选择题
数列{an}满足a1=a2=1,an+an+1+an+2=cos
|
答案
∵数列{an}满足a1=a2=1,an+an+1+an+2=cos
(n∈N*),2nπ 3
∴从第一项开始,3个一组,则第n组的第一个数为a3n-2
a3n-2+a3n-1+a3n
=cos2nπ 3
=cos(2nπ-
)4π 3
=cos(-
)4π 3
=cos4π 3
=-cosπ 3
=-
,1 2
∵2013÷3=671,即S2013正好是前671组的和,
∴S2013=-
×671=-1 2
.671 2
故选D.