问题 解答题

已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.

(1)求数列{an}的通项公式;

(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.

答案

(1)当n=1时,a1=s1=

1
4
a21
+
1
2
a1-
3
4
,解出a1=3,

又4Sn=an2+2an-3①

当n≥2时4sn-1=an-12+2an-1-3②

①-②4an=an2-an-12+2(an-an-1),即an2-an-12-2(an+an-1)=0,

∴(an+an-1)(an-an-1-2)=0,

∵an+an-1>0∴an-an-1=2(n≥2),

∴数列{an}是以3为首项,2为公差的等差数列,∴an=3+2(n-1)=2n+1.

(2)Tn=3×21+5×22+…+(2n+1)•2n

又2Tn=3×22+5×23+(2n-1)•2n+(2n+1)2n+1

④-③Tn=-3×21-2(22+23++2n)+(2n+1)2n+1-6+8-2•2n-1+(2n+1)•2n+1=(2n-1)•2n+2

选择题
多项选择题