问题
解答题
已知数列{an}与{bn}有如下关系:a1=2,an+1=
(1)求数列{bn}的通项公式. (2)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn<n+
|
答案
(1)∵bn=
.an+1 an-1
∴b1=
=3,a1+1 a1-1
∵an+1=
(an+1 2
),1 an
∴bn+1=
=(an+1+1 an+1-1
)2=an+1 an-1
>0b 2n
∴bn=
=…=32n-1b 2n-1
(2)证明:当n≥2时,an+1-1=
≤an-1 32n-1+1
(an-1)1 10
(当且仅当n=2时取等号)且a2=
(a1+1 2
)=1 a1 5 4
故a3-1≤
(a2-1),a4-1≤1 10
(a3-1),…,an-1≤1 10
(an-1-1)1 10
以上式子累和得Sn-a1-a2-(n-2)≤
[Sn-1-a1-(n-2)]1 10
∴10[Sn-a1-a2-(n-2)]≤Sn-1-a1-(n-2)
∴9Sn≤
+9n-25 2 32n-1+1 32n-1-1
∴Sn≤
+n-25 18
<32n-1+1 9(32n-1-1)
+n-25 18
=1 9
+n<23 18
+n24 18
∴Sn<n+
.得证4 3