问题 解答题
已知数列{an}与{bn}有如下关系:a1=2,an+1=
1
2
(an+
1
an
),bn=
an+1
an-1

(1)求数列{bn}的通项公式.
(2)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn<n+
4
3
答案

(1)∵bn=

an+1
an-1

∴b1=

a1+1
a1-1
=3,

∵an+1=

1
2
(an+
1
an
),

∴bn+1=

an+1+1
an+1-1
=(
an+1
an-1
)
2
=
b2n
>0

bn=

b2n-1
=…=32n-1

(2)证明:当n≥2时,an+1-1=

an-1
32n-1+1
1
10
(an-1)

(当且仅当n=2时取等号)且a2=

1
2
(a1+
1
a1
)=
5
4

a3-1≤

1
10
(a2-1),a4-1≤
1
10
(a3-1)
,…,an-1≤
1
10
(an-1-1)

以上式子累和得Sn-a1-a2-(n-2)≤

1
10
[Sn-1-a1-(n-2)]

∴10[Sn-a1-a2-(n-2)]≤Sn-1-a1-(n-2)

9Sn

25
2
+9n-
32n-1+1
32n-1-1

Sn

25
18
+n-
32n-1+1
9(32n-1-1)
25
18
+n-
1
9
=
23
18
+n<
24
18
+n

∴Sn<n+

4
3
.得证

选择题
单项选择题