问题 解答题
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
1
an-
1
2
(n≥1)

(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn
答案

法一:

(I)a1=1,故b1=

1
1-
1
2
=2;a2=
7
8

b2=

1
7
8
-
1
2
=
8
3
a3=
3
4

b3=

1
3
4
-
1
2
=4;a4=
13
20

b4=

20
3

(II)因(b1-

4
3
)(b3-
4
3
)=
2
3
×
8
3
=(
4
3
)2(b2-
4
3
)2=(
4
3
)2,(b1-
4
3
)(b3-
4
3
)=(b2-
4
3
)2

故猜想{bn-

4
3
}是首项为
2
3
,公比q=2的等比数列.

因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=

5+2a
16-8an
(n≥1).

bn+1-

4
3
=
1
an+1-
1
2
-
4
3
=
16-8an
6an-3
-
4
3
=
20-16an
6an-3

2(bn-

4
3
)=
2
an-
1
2
-
8
3
=
20-16an
6an-3
=bn+1-
4
3
b1-
4
3
≠0,

|bn-

4
3
|确是公比为q=2的等比数列.

b1-

4
3
=
2
3
,故bn-
4
3
=
1
3
2n
bn=
1
3
2n+
4
3
(n≥1)

bn=

1
an-
1
2
anbn=
1
2
bn+1

故Sn=a1b1+a2b2+…+anbn=

1
2
(b1+b2++bn)+n=
1
3
(1-2n)
1-2
+
5
3
n
=
1
3
(2n+5n-1)

法二:

(Ⅰ)由bn=

1
an-
1
2
an=
1
bn
+
1
2
,代入递推关系8an+1an-16an+1+2an+5=0,

整理得

4
bn+1bn
-
6
bn+1
+
3
bn
=0,即bn+1=2bn-
4
3

由a1=1,有b1=2,所以b2=

8
3
b3=4,b4=
20
3

(Ⅱ)由bn+1=2bn-

4
3
bn+1-
4
3
=2(bn-
4
3
),b1-
4
3
=
2
3
≠0,

所以{bn-

4
3
}是首项为
2
3
,公比q=2的等比数列,

bn-

4
3
=
1
3
2n,即bn=
1
3
2n+
4
3
(n≥1)

bn=

1
an-
1
2
,得anbn=
1
2
bn+1

故Sn=a1b1+a2b2+…+anbn=

1
2
(b1+b2++bn)+n=
1
3
(1-2n)
1-2
+
5
3
n
=
1
3
(2n+5n-1)

法三:

(Ⅰ)同解法一

(Ⅱ)b2-b1=

2
3
b3-b2=
4
3
b4-b3=
8
3
2
3
×
8
3
=(
4
3
)2猜想{bn+1-bn}是首项为
2
3

公比q=2的等比数列,bn+1-bn=

1
3
2n

又因an≠2,故an+1=

5+2an
16-8an
(n≥1).

因此bn+1-bn=

1
an+1-
1
2
-
1
an-
1
2
=
1
5+2an
16-8an
-
1
2
-
2
2an-1
=

16-8an
6an-3
-
6
6an-3
=
10-8an
6an-3

bn+2-bn+1=

1
an+2-
1
2
-
1
an+1-
1
2
=
16-8an+1
6an+1-3
-
16-8an
6an-3
=
36-24an
6an-3
-
16-8an
6an-3
=
20-16an
6an-3
=2(bn+1-bn)

b2-b1=

2
3
≠0,{bn+1-bn}是公比q=2的等比数列,bn+1-bn=
1
3
2n

从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1

=

1
3
(2n-1+2n-2++21)+2

=

1
3
(2n-2)+2

=

1
3
2n+
4
3
(n≥1).

bn=

1
an-
1
2
anbn=
1
2
bn+1

故Sn=a1b1+a2b2+…+anbn=

1
2
(b1+b2++bn)+n=
1
3
(1-2n)
1-2
+
5
3
n
=
1
3
(2n+5n-1)

单项选择题 A1型题
填空题