数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
(Ⅰ)求b1、b2、b3、b4的值; (Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn. |
法一:
(I)a1=1,故b1=
=2;a2=1 1- 1 2
,7 8
故b2=
=1
-7 8 1 2
;a3=8 3
,3 4
故b3=
=4;a4=1
-3 4 1 2
,13 20
故b4=
.20 3
(II)因(b1-
)(b3-4 3
)=4 3
×2 3
=(8 3
)2,(b2-4 3
)2=(4 3
)2,(b1-4 3
)(b3-4 3
)=(b2-4 3
)24 3
故猜想{bn-
}是首项为4 3
,公比q=2的等比数列.2 3
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
(n≥1).5+2a 16-8an
因bn+1-
=4 3
-1 an+1- 1 2
=4 3
-16-8an 6an-3
=4 3
,20-16an 6an-3
2(bn-
)=4 3
-2 an- 1 2
=8 3
=bn+1-20-16an 6an-3
,b1-4 3
≠0,4 3
故|bn-
|确是公比为q=2的等比数列.4 3
因b1-
=4 3
,故bn-2 3
=4 3
•2n,bn=1 3
•2n+1 3
(n≥1),4 3
由bn=
得anbn=1 an- 1 2
bn+1,1 2
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=1 2
+
(1-2n)1 3 1-2
n=5 3
(2n+5n-1)1 3
法二:
(Ⅰ)由bn=
得an=1 an- 1 2
+1 bn
,代入递推关系8an+1an-16an+1+2an+5=0,1 2
整理得
-4 bn+1bn
+6 bn+1
=0,即bn+1=2bn-3 bn
,4 3
由a1=1,有b1=2,所以b2=
,b3=4,b4=8 3
.20 3
(Ⅱ)由bn+1=2bn-
,bn+1-4 3
=2(bn-4 3
),b1-4 3
=4 3
≠0,2 3
所以{bn-
}是首项为4 3
,公比q=2的等比数列,2 3
故bn-
=4 3
•2n,即bn=1 3
•2n+1 3
(n≥1).4 3
由bn=
,得anbn=1 an- 1 2
bn+1,1 2
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=1 2
+
(1-2n)1 3 1-2
n=5 3
(2n+5n-1).1 3
法三:
(Ⅰ)同解法一
(Ⅱ)b2-b1=
,b3-b2=2 3
,b4-b3=4 3
,8 3
×2 3
=(8 3
)2猜想{bn+1-bn}是首项为4 3
,2 3
公比q=2的等比数列,bn+1-bn=
•2n1 3
又因an≠2,故an+1=
(n≥1).5+2an 16-8an
因此bn+1-bn=
-1 an+1- 1 2
=1 an- 1 2
-1
-5+2an 16-8an 1 2
=2 2an-1
-16-8an 6an-3
=6 6an-3
;10-8an 6an-3
bn+2-bn+1=
-1 an+2- 1 2
=1 an+1- 1 2
-16-8an+1 6an+1-3
=16-8an 6an-3
-36-24an 6an-3
=16-8an 6an-3
=2(bn+1-bn).20-16an 6an-3
因b2-b1=
≠0,{bn+1-bn}是公比q=2的等比数列,bn+1-bn=2 3
•2n,1 3
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
(2n-1+2n-2++21)+21 3
=
(2n-2)+21 3
=
•2n+1 3
(n≥1).4 3
由bn=
得anbn=1 an- 1 2
bn+1,1 2
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=1 2
+
(1-2n)1 3 1-2
n=5 3
(2n+5n-1).1 3