问题 解答题
各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2pan2+pan-p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn=
4Sn
n+3
2n
,求数列{bn}的前n项和T.
答案

(1)∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p

∴2a1=2pa12+pa1-p,即2=2p+p-p,解得p=1;

(2)2Sn=2an2+an-1,①

2Sn-1=2an-12+an-1-1,(n≥2),②

①-②即得(an-an-1-

1
2
)(an+an-1)=0,

因为an+an-1≠0,所以an-an-1-

1
2
=0,

an=

n+1
2

(3)2Sn=2an2+an-1=2×

(n+1)2
4
n+1
2
-1,

∴Sn=

n2+3n
4

bn=

4Sn
n+3
2n=n•2n

Tn=1×21+2×22+…+n•2n

又2Tn=1×22+2×23+…+(n-1)•2n+n2n+1

④-③Tn=-1×21-(22+23+…+2n)+n2n+1=(n-1)2n+1+2

∴Tn=(n-1)2n+1+2

单项选择题
单项选择题