问题
解答题
各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2pan2+pan-p(p∈R) (1)求常数p的值; (2)求数列{an}的通项公式; (3)记bn=
|
答案
(1)∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p
∴2a1=2pa12+pa1-p,即2=2p+p-p,解得p=1;
(2)2Sn=2an2+an-1,①
2Sn-1=2an-12+an-1-1,(n≥2),②
①-②即得(an-an-1-
)(an+an-1)=0,1 2
因为an+an-1≠0,所以an-an-1-
=0,1 2
∴an=n+1 2
(3)2Sn=2an2+an-1=2×
+ (n+1)2 4
-1,n+1 2
∴Sn=
,n2+3n 4
∴bn=
•2n=n•2n4Sn n+3
Tn=1×21+2×22+…+n•2n③
又2Tn=1×22+2×23+…+(n-1)•2n+n2n+1 ④
④-③Tn=-1×21-(22+23+…+2n)+n2n+1=(n-1)2n+1+2
∴Tn=(n-1)2n+1+2