问题
填空题
设数列{an}的前n项和Sn满足:Sn+an=
|
答案
∵Sn+an=n-1 n(n+1)
∴Sn=
-an,Sn+1=n-1 n(n+1)
-an+1n (n+2)(n+1)
∴an+1=Sn+1-Sn=
-an+1-n (n+1)(n+2)
+an,n-1 n(n+1)
即 2an+1=
-n (n+1)(n+2)
+an=n-1 n(n+1)
+an=-n+2 n(n+1)(n+2)
+an=n+2-2n n(n+1)(n+2)
+an+-2 (n+1)(n+2)
,1 n(n+1)
由此得 2(an+1+
)=an+1 (n+1)(n+2)
.1 n(n+1)
令bn=an+
,b1=a1+1 n(n+1)
=1 2
(把n=1代入题意中的式子易求得a1=0),1 2
有bn+1=
bn,故bn=1 2
,所以an=1 2n
-1 2n
.1 n(n+1)
故答案为:
-1 2n 1 n(n+1)