问题 填空题
设数列{an}的前n项和Sn满足:Sn+an=
n-1
n(n+1)
,n=1,2,…,则通项an=______.
答案

Sn+an=

n-1
n(n+1)

Sn=

n-1
n(n+1)
-anSn+1=
n
(n+2)(n+1)
-an+1

an+1=Sn+1-Sn=

n
(n+1)(n+2)
-an+1-
n-1
n(n+1)
+an

即  2an+1=

n
(n+1)(n+2)
-
n-1
n(n+1)
+an=
-n+2
n(n+1)(n+2)
+an
=

n+2-2n
n(n+1)(n+2)
+an=
-2
(n+1)(n+2)
+an+
1
n(n+1)

由此得 2(an+1+

1
(n+1)(n+2)
)=an+
1
n(n+1)

bn=an+

1
n(n+1)
b1=a1+
1
2
=
1
2
(把n=1代入题意中的式子易求得a1=0),

bn+1=

1
2
bn,故bn=
1
2n
,所以an=
1
2n
-
1
n(n+1)

故答案为:

1
2n
-
1
n(n+1)

单项选择题 B型题
选择题