问题
解答题
(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. |
答案
(1)7(2)0.4
题目分析:(1)根据平均数公式写出这组数据的平均数表示式,在表示式中有一个未知量,根据解方程的思想得到结果,求出这组数据的方差,再进一步做出标准差.
(2)本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41种结果,根据概率公式得到结果.
解:(1)根据平均数的个数可得75=,
∴x6=90,
这六位同学的方差是(25+1+9+25+9+225)=49,
∴这六位同学的标准差是7
(2)由题意知本题是一个古典概型,
试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,
满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,
根据古典概型概率个数得到P==0.4.
点评:本题考查一组数据的平均数公式的应用,考查求一组数据的方差和标准差,考查古典概型的概率公式的应用,是一个综合题目.