问题
填空题
已知函数f(x)=xp+qx+r,f(1)=6,f′(1)=5,f′(0)=3,an=
|
答案
∵f(x)=xp+qx+r,
∴f'(x)=p•xp-1+q,
∵f′(1)=5=p+q,f'(0)=3=q f(1)=6=1+q+r
解得p=2,q=3,r=2,
于是f(x)=x2+3x+2,
∵an=
,n∈N+,1 f(n)
∴an=
=1 n2+3n+2
-1 n+1
,1 n+2
∴数列{an}的前n项和:
Sn=
-1 2
+1 3
-1 3
+…+1 4
-1 n+1 1 n+2
=
-1 2 1 n+2
=
=n 2(n+2)
.n 2n+4
故答案为:
.n 2n+4