问题 解答题

数列{an}中,a3=1,a1+a2+…+an=an+1(n∈N*).

(Ⅰ)求a1,a2,a4,a5

(Ⅱ)求数列{an}的前n项和Sn

(Ⅲ)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=n(n+1)(n+2)Sn,试求数列{cn}的前n项和Tn

答案

(Ⅰ)当n=1时,有a1=a2;当n=2时,有a1+a2=a3;…

∵a3=1,

∴a1=

1
2
,a2=
1
2
,a4=2,a5=4.…(4分)

(Ⅱ)∵Sn=an+1=Sn+1-Sn,…(6分)

∴2Sn=Sn+1

Sn+1
Sn
=2…(8分)

∴{Sn}是首项为S1=a1=

1
2
,公比为2的等比数列.

∴Sn=

1
2
•2n-1=2n-2…(10分)

(Ⅲ)由Sn=2n-2,得bn=n-2,

∴bn+3=n+1,bn+4=n+2,

∵cn•bn+3•bn+4=n(n+1)(n+2)Sn

∴cn•(n+1)(n+2)=n(n+1)(n+2)2n-2

即cn=n•2n-2.  …(12分)

Tn=1×2-1+2×20+3×21+4×22+…+n•2n-2…①

则2Tn=1×20+2×21+3×22+…+(n-1)•2n-2+n•2n-1…②

②一①得

Tn=n•2n-1-2-1-20-21-…-2n-2=n•2n-1-

2-1(1-2n)
1-2
=n•2n-1+
1
2
.…(14分)

填空题
判断题