问题
解答题
已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3f(n),n∈N*. (1)求数列{an}的通项公式; (2)设bn=
|
答案
(1)由题意得
,解得log3(2a+b)=1 log3(5a+b)=2
,∴f(x)=log3(2x-1)an=3log3(2n-1)=2n-1,n∈N*a=2 b=-1
(2)由(1)得bn=
,∴Tn=2n-1 2n
+1 21
+3 22
++5 23
+2n-3 2n-1
①2n-1 2n
Tn= 1 2
+1 22
++3 23
+2n-5 2n-1
+2n-3 2n
②;2n-1 2n+1
①-②得
Tn=1 2
+1 21
+2 22
++2 23
+2 2n-1
-2 2n
=2n-1 2n+1
+(1 21
+1 21
++1 22
+1 2n-2
)-1 2n-1
=2n-1 2n+1
-3 2
-1 2n-1
,2n-1 2n+1
∴Tn=3-
-1 2n-2
=3-2n-1 2n 2n+3 2n