问题
解答题
已知:对于数列{an},定义{△an}为数列{an}的一阶差分数列,其中△an=an+1-an, (1)若数列{an}的通项公式an=
(2)若数列{an}的首项是1,且满足△an-an=2n, ①设bn=
②求:数列{an}的通项公式及前n项和Sn. |
答案
(1)依题意△an=an+1-an,
∴△an=[
(n+1)2-5 2
(n+1)]-[3 2
n2-5 2
n]=5n+13 2
(2)①由△an-an=2n⇒an+1-an-an=2n⇒an+1=2an+2n.
∵bn=
,an 2n
∴bn+1-bn=
-an+1 2n+1
=an 2n
=an+1-2an 2n+1
=2n 2n+1
,且b1=1 2
=a1 2
,1 2
故{bn}是首项为
,公差为1 2
的等差数列1 2
∴bn=n 2
②∵bn=
,an 2n
∴an=
•2n=n•2n-1n 2
∴sn=1•20+2×21+3×22+…+n•2n-1(1)
2sn=1•21+2•22+…+n•2n(2)
(1)-(2)得-sn=1+2+22+…+2n-1-n•2n
=
-n•2n1-2n 1-2
∴sn=n•2n-2n+1
=(n-1)2n+1.