问题 解答题
数列{an}的前n项和为Sn,已知Sn+an=-n(n∈N*)恒成立.
(1)求数列{an}的通项公式;
(2)bn=ln(an+1),求{anbn}的前n项和;
(3)求证:
1
2a1a2
+
1
22a2a3
+…+
1
2nanan+1
<2
答案

(1)∵Sn+an=-n①

∴n≥2时,Sn-1+an-1=-n+1②

①-②可得2an=an-1-1

∴2(an+1)=an-1+1

又a1=-

1
2
,∴{an+1}是以
1
2
为首项,
1
2
为公比的等比数列

∴an+1=(

1
2
)n,∴an=(
1
2
)
n
-1;

(2)bn=ln(an+1)=nln

1
2
,∴anbn=[(
1
2
)
n
-1]•nln
1
2

∴{anbn}的前n项和为ln

1
2
[
1
2
+2•(
1
2
)
2
+…+n•(
1
2
)
n
]-
n(n+1)
2
•ln
1
2

令Tn=ln

1
2
[
1
2
+2•(
1
2
)
2
+…+n•(
1
2
)
n
],则
1
2
Tn=ln
1
2
[(
1
2
)
2
+2•(
1
2
)
3
+…+(n-1)•(
1
2
)
n
+n•(
1
2
)
n+1
],

两式相减,可得Tn=ln

1
2
(2-
1
2n-1
-
n
2n

∴{anbn}的前n项和为ln

1
2
(2-
1
2n-1
-
n
2n
)-
n(n+1)
2
•ln
1
2

(3)证明:由(1)知,

1
2nanan+1
=-2(
1
1
2n
-1
-
1
1
2n+1
-1

1
2a1a2
+
1
22a2a3
+…+
1
2nanan+1
=-2(
1
1
21
-1
-
1
1
22
-1
+
1
1
22
-1
-
1
1
3
-1
+…+
1
1
2n
-1
-
1
1
2n+1
-1

=-2(

1
1
21
-1
-
1
1
2n+1
-1
)<2

1
2a1a2
+
1
22a2a3
+…+
1
2nanan+1
<2.

选择题
判断题