问题
解答题
数列{an}的前n项和为Sn,已知Sn+an=-n(n∈N*)恒成立. (1)求数列{an}的通项公式; (2)bn=ln(an+1),求{anbn}的前n项和; (3)求证:
|
答案
(1)∵Sn+an=-n①
∴n≥2时,Sn-1+an-1=-n+1②
①-②可得2an=an-1-1
∴2(an+1)=an-1+1
又a1=-
,∴{an+1}是以1 2
为首项,1 2
为公比的等比数列1 2
∴an+1=(
)n,∴an=(1 2
)n-1;1 2
(2)bn=ln(an+1)=nln
,∴anbn=[(1 2
)n-1]•nln1 2
,1 2
∴{anbn}的前n项和为ln
[1 2
+2•(1 2
)2+…+n•(1 2
)n]-1 2
•lnn(n+1) 2 1 2
令Tn=ln
[1 2
+2•(1 2
)2+…+n•(1 2
)n],则1 2
Tn=ln1 2
[(1 2
)2+2•(1 2
)3+…+(n-1)•(1 2
)n+n•(1 2
)n+1],1 2
两式相减,可得Tn=ln
(2-1 2
-1 2n-1
)n 2n
∴{anbn}的前n项和为ln
(2-1 2
-1 2n-1
)-n 2n
•lnn(n+1) 2
;1 2
(3)证明:由(1)知,
=-2(1 2nanan+1
-1
-11 2n
)1
-11 2n+1
∴
+1 2a1a2
+…+1 22a2a3
=-2(1 2nanan+1
-1
-11 21
+1
-11 22
-1
-11 22
+…+1
-11 3
-1
-11 2n
)1
-11 2n+1
=-2(
-1
-11 21
)<21
-11 2n+1
∴
+1 2a1a2
+…+1 22a2a3
<2.1 2nanan+1