问题
解答题
已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是等比数列{bn}的第二项、第三项、第四项. (1)求数列{an}与{bn}的通项公式; (2)设数列{cn}对任意正整数n均有
|
答案
(1)由题意得(a1+d)(a1+13d)=(a1+4d)2(d>0)
∵a1=1,
∴d=2,
∴an=2n-1,
∵b2=a2=1+2=3,
b3=a5=1+8=9,
∴
,b1q=3 b1q2=9
∴b1=1,q=3,
∴bn=3n-1(5分)
(2)当n=1时,c1=2a2×b1=18;
当n≥2时,
=(n+1)an+1-nan=4n+1,cn bn
∴cn=(4n+1)•3n-1,故cn=
,18,n=1 (4n+1)•3n-1,n≥2
∴Sn=c1+c2.+…+cn=18+9×3+13×32+17×33+…+(4n-3)×3n-2+(4n+1)×3n-1,①
3Sn=54+9×32+13×33+17×34…+(4n-3)×3n-1+(4n+1)×3n,②
①-②,得-2Sn=-9+4(32+33+34+…+3n-1)-(4n+1)×3n
=-9+4×
-(4n+1)×3n9(1-3n-2) 1-3
=-9+2×3n-18-(4n+1)×3n
=-27+(1-4n)×3n,
∴Sn=
×3n+4n-1 2
.27 2