问题 填空题
已知数列{an}的通项公式an=
1+2+…+n
n
bn=
1
anan+1
,则数列{bn}的前n项和为______.
答案

an=

1+2+…+n
n
=
n(n+1)
2n
=
n+1
2
,∴bn=
1
anan+1
=
4
(n+1)(n+2)
=4(
1
n+1
-
1
n+2
)

∴数列{bn}的前n项和=4[(

1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)]

=4(

1
2
-
1
n+2
)=
2n
n+2

故答案为

2n
n+2

填空题
单项选择题