已知数列{an}、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1. (Ⅰ)求数列{bn}的通项公式; ( II)求数列{
( III)若数列{bn}的前n项和为Sn,设 Tn=S2n-Sn,求证:Tn+1>Tn. |
(Ⅰ)由bn=an-1得 an=bn+1代入 an-1=an(an+1-1),
得 bn=(bn+1)bn+1,整理得 bn-bn+1=bnbn+1.(2分)
∵bn≠0,否则 an=1,与 a1=2矛盾.
从而得
-1 bn+1
=1,1 bn
∵b1=a1-1=1
∴数列 {
}是首项为1,公差为1的等差数列.(4分)1 bn
∴
=n,即bn=1 bn
.(6分)1 n
(II)
=n•2n2n bn
∴Dn=2+2•22+3•23+…+n•2n(1)
∴2Dn=1•22+2•23+3•24+…+n•2n+1(2)(6分)
-Dn=2+22+23+…+2n-n•2n+1=
-n•2n+1,2(1-2n) 1-2
∴Dn=(n-1)2n+1+2.(8分)
(III)∵Sn=1+
+1 2
+…+1 3
,1 n
∴Tn=S2n-Sn=(1+
+1 2
+…+1 3
+1 n
+…+1 n+1
)-(1+1 2n
+1 2
+…+1 3
)1 n
=
+1 n+1
+…+1 n+2
.(12分)1 2n
证法1:∵Tn+1-Tn=
+1 n+2
+…+1 n+3
-(1 2n+2
+1 n+1
+…+1 n+2
)1 2n
=
+1 2n+1
-1 2n+2 1 n+1
=
-1 2n+1
=1 2n+2
>01 (2n+1)(2n+2)
∴Tn+1>Tn.(14分)
证法2:∵2n+1<2n+2,
∴
>1 2n+1
,1 2n+2
∴Tn+1-Tn>
+1 2n+2
-1 2n+2
=0.1 n+1
∴Tn+1>Tn.(12分)