问题 解答题
已知数列{an}、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1.
(Ⅰ)求数列{bn}的通项公式;
( II)求数列{
2n
bn
}
的前n项和Dn
( III)若数列{bn}的前n项和为Sn,设 Tn=S2n-Sn,求证:Tn+1>Tn
答案

(Ⅰ)由bn=an-1得 an=bn+1代入 an-1=an(an+1-1),

得 bn=(bn+1)bn+1,整理得 bn-bn+1=bnbn+1.(2分)

∵bn≠0,否则 an=1,与 a1=2矛盾.

从而得 

1
bn+1
-
1
bn
=1,

∵b1=a1-1=1

∴数列 {

1
bn
}是首项为1,公差为1的等差数列.(4分)

1
bn
=n,即bn=
1
n
.(6分)

(II)

2n
bn
=n•2n

Dn=2+2•22+3•23+…+n•2n(1)

2Dn=1•22+2•23+3•24+…+n•2n+1(2)(6分)

-Dn=2+22+23+…+2n-n•2n+1=

2(1-2n)
1-2
-n•2n+1

Dn=(n-1)2n+1+2.(8分)

(III)∵Sn=1+

1
2
+
1
3
+…+
1
n

∴Tn=S2n-Sn=(1+

1
2
+
1
3
+…+
1
n
+
1
n+1
+
+
1
2n
)-(1+
1
2
+
1
3
+
+
1
n

=

1
n+1
+
1
n+2
+…+
1
2n
.(12分)

证法1:∵Tn+1-Tn=

1
n+2
+
1
n+3
+…+
1
2n+2
-
1
n+1
+
1
n+2
+
…+
1
2n

=

1
2n+1
+
1
2n+2
-
1
n+1

=

1
2n+1
-
1
2n+2
=
1
(2n+1)(2n+2)
>0

∴Tn+1>Tn.(14分)

证法2:∵2n+1<2n+2,

1
2n+1
1
2n+2

Tn+1-Tn

1
2n+2
+
1
2n+2
-
1
n+1
=0.

∴Tn+1>Tn.(12分)

单项选择题
单项选择题