问题
填空题
已知数列{an}满足a1=31,an+1=an+2n,n∈N+,则
|
答案
∵数列{an}满足a1=31,an+1=an+2n,n∈N+,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×1+31=2×
+31=n(n-1)+31.n(n-1) 2
∴
=n-1+an n
.31 n
设函数f(x)=x+
-1,(x≥1),则f′(x)=1-31 x
=31 x2
,令f′(x)=0,则x=x2-31 x2
,31
∴当0<x<
时,f′(x)<0,即函数f(x)单调递减;当x>31
时,f′(x)>0,即函数f(x)单调递增.31
∴当x=
时,函数f(x)取得最小值.31
根据以上函数f(x)的性质可知:对于
=n-1+an n
来说,当n=6时,此式取得最小值31 n
.61 5
故答案为
.61 6