问题
选择题
设偶函数f(x)=loga|x+b|在(0,+∞)上单调,则f(b-2)与f(a+1)的大小关系为
A.f(b-2)=f(a+1)
B.f(b-2)>f(a+1)
C.f(b-2)<f(a+1)
D.不能确定
答案
答案:C
解析:∵函数f(x)是偶函数,∴b=0,此时f(x)=loga|x|.
当a>1时,函数f(x)=loga|x|在(0,+∞)上是增函数,∴f(a+1)>f(2)=f(b-2);
当0<a<1时,函数f(x)=loga|x|在(0,+∞)上是减函数,∴f(a+1)>f(2)=f(b-2).
综上,可知f(b-2)<f(a+1),故答案选C