问题 解答题
已知数列{an}的首项a1=2,其前n项和为Sn,当n≥2时,满足an-2n=Sn-1,又bn=
an
2n

(I)证明:数列{bn}是等差数列;
(II)求数列{Sn}的前n项和Tn
答案

(I)由题意知得,a1=2,a2-22=S1=a1=2,∴a2=6.

n≥2时,an-2n=Sn-1,an+1-2n+1=Sn

两式相减得 an+1-an-2n=an

即 an+1=2an+2n  (n≥2)

于是

an+1
2n+1
=
an
2n
+
1
2

即 bn+1-bn=

1
2
   n≥2

又b1=

a1
2 
=1,b2=
a2
22
=
3
2
,b2-b1=
1
2

所以数列{bn}是首项为1,公差为0.5的等差数列.

(II)由(I)知,bn=1+(n-1)×

1
2
=
n+1
2

an=bn2n=(n+1)2n-1

又n≥2时an-2n=Sn-1,Sn-1=(n-1)2n-1

∴Sn=n•2n

∴Tn=1×21+2×22+3×23+…+n×2n,…①

2Tn=1×22+2×23+3×24+…+n×2n+1…②

②-①可得

Tn=2n+1-2-n×2n=(n-1)2n+1+2.

简答题
选择题