已知数列{an}的首项a1=2,其前n项和为Sn,当n≥2时,满足an-2n=Sn-1,又bn=
(I)证明:数列{bn}是等差数列; (II)求数列{Sn}的前n项和Tn. |
(I)由题意知得,a1=2,a2-22=S1=a1=2,∴a2=6.
n≥2时,an-2n=Sn-1,an+1-2n+1=Sn,
两式相减得 an+1-an-2n=an
即 an+1=2an+2n (n≥2)
于是
=an+1 2n+1
+an 2n 1 2
即 bn+1-bn=
n≥21 2
又b1=
=1,b2=a1 2
=a2 22
,b2-b1=3 2
,1 2
所以数列{bn}是首项为1,公差为0.5的等差数列.
(II)由(I)知,bn=1+(n-1)×
=1 2
,n+1 2
an=bn2n=(n+1)2n-1,
又n≥2时an-2n=Sn-1,Sn-1=(n-1)2n-1,
∴Sn=n•2n
∴Tn=1×21+2×22+3×23+…+n×2n,…①
2Tn=1×22+2×23+3×24+…+n×2n+1…②
②-①可得
Tn=2n+1-2-n×2n=(n-1)2n+1+2.