问题
解答题
(文科做)数列{an}中,a3=1,Sn=an+1(n=1,2,3…).
(I)求a1,a2;
(II)求数列{an}的前n项和Sn;
(III)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1,试求数列{cn}的前n项和.
答案
(I)∵a1=a2,a1+a2=a3,
∴2a1=a3=1,
∴a1=
,a2=1 2
.…2分1 2
(II)∵Sn=an+1=Sn+1-Sn,
∴2Sn=Sn+1,
=2,…6分Sn+1 Sn
∴{Sn}是首项为S1=a1=
,公比为2的等比数列.1 2
∴Sn=
•2n-1=2n-2.(n∈N*).…9分1 2
(III)∵bn=log2Sn,Sn=2n-2,
∴bn=n-2,bn+3=n+1,bn+4=n+2,
∴cn•(n+1)(n+2)=1,cn=
=1 (n+1)(n+2)
-1 n+1
.…11分1 n+2
∴c1+c2+…+cn=(
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n+1
)=1 n+2
-1 2
=1 n+2
.…14分n 2n+4