问题
解答题
已知数列{an}中,a1=1,an<an+1,设bn=
(Ⅰ)bn<2(
(Ⅱ)若数列{an}是公比为q且q≥3的等比数列,则Sn<1. |
答案
证明:(Ⅰ)由题意可知an>0
∵bn-2(
-1 an
)1 an+1
=
-2(an+1-an an+1• an+1
-1 an
)1 an+1
=
-2an+1-an an+1 an+1
-an+1 an
•an+1 an
=
.(
-an+1
)(an
•an+1
+an-2an+1)an an+1•
•an+1 an
又an<an+1,∴
-an+1
>0,an
•an+1
<an+1,an
•an+1
+an-2an+1<0,an
则
<0.(
-an+1
)(an
•an+1
+an-2an+1)an an+1•
•an+1 an
∴bn<2(
-1 an
);1 an+1
(Ⅱ)数列{an}是首项a1=1,公比为q且q≥3的等比数列,
∴an=a1qn-1=qn-1.
∴bn=
=an+1-an an+1• an+1
=q-qn-qn-1 q 3n 2
(1-q-1).n 2
Sn=b1+b2+…+bn
=(1-q-1)(q-
+q-1 2
+q-2 2
+…+q-3 2
)n 2
=(1-q-1)•q-
(1-q-1 2
)n 2 1-q- 1 2
=(
+1 q
)(1-1 q
).1 qn
∵q≥3,∴0<
+1 q
≤1 q
+1 3
=1 3
<1.
+13 3
0<1-
<1.1 qn
∴Sn=(
+1 q
)(1-1 q
)<1.1 qn