问题 解答题
已知数列{an}中,a1=1,an<an+1,设bn=
an+1-an
an+1
an+1
,Sn=b1+b2+…+bn,求证:
(Ⅰ)bn<2(
1
an
-
1
an+1
)

(Ⅱ)若数列{an}是公比为q且q≥3的等比数列,则Sn<1.
答案

证明:(Ⅰ)由题意可知an>0

bn-2(

1
an
-
1
an+1
)

=

an+1-an
an+1
an+1
-2(
1
an
-
1
an+1
)

=

an+1-an
an+1
an+1
-2
an+1
-
an
an+1
an

=

(
an+1
-
an
)(
an+1
an
+an-2an+1)
an+1
an+1
an

又an<an+1,∴

an+1
-
an
>0,
an+1
an
an+1

an+1
an
+an-2an+1<0,

(
an+1
-
an
)(
an+1
an
+an-2an+1)
an+1
an+1
an
<0.

bn<2(

1
an
-
1
an+1
);

(Ⅱ)数列{an}是首项a1=1,公比为q且q≥3的等比数列,

an=a1qn-1=qn-1

bn=

an+1-an
an+1
an+1
=
qn-qn-1
q
3n
2
=q-
n
2
(1-q-1).

Sn=b1+b2+…+bn

=(1-q-1)(q-

1
2
+q-
2
2
+q-
3
2
+…+q-
n
2
)

=(1-q-1)•

q-
1
2
(1-q-
n
2
)
1-q-
1
2

=(

1
q
+
1
q
)(1-
1
qn
).

∵q≥3,∴0<

1
q
+
1
q
1
3
+
1
3
=
3
+1
3
<1.

0<1-

1
qn
<1.

Sn=(

1
q
+
1
q
)(1-
1
qn
)<1.

单项选择题
名词解释