问题 填空题
已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=______.
答案

∵点P(an,an+1)(n∈N*)在直线x-y+1=0上,

∴an+1-an=1,

∴数列{an}是等差数列,

∵a1=1,

∴sn=

n2+n
2

1
sn
=
2
n(n+1)

1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=2(1-
1
2
+
1
2
-…-
1
n+1
)=
2n
n+1

故答案为

2n
n+1

选择题
多项选择题