问题 填空题

已知数列{an}满足a1=25,an+1=an+2n+1,则an的通项公式为______.

答案

由数列{an}满足a1=25,an+1=an+2n+1,得an+1-an=2n+1.

∴当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2(n-1)+1+2(n-2)+1+…+2×1+1+25

=

(n-1)(n-1+1)
2
+25+n-1=n2+24,当n=1时也成立,

an=n2+24

故答案为an=n2+24

单项选择题
单项选择题