问题
填空题
已知数列{an}满足a1=25,an+1=an+2n+1,则an的通项公式为______.
答案
由数列{an}满足a1=25,an+1=an+2n+1,得an+1-an=2n+1.
∴当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2(n-1)+1+2(n-2)+1+…+2×1+1+25
=2×
+25+n-1=n2+24,当n=1时也成立,(n-1)(n-1+1) 2
∴an=n2+24.
故答案为an=n2+24.