问题
选择题
定义:F(x,y)=yx(x>0,y>0),设数列{an}满足an=
|
答案
∵数列{an}满足an=
,∴an=F(n,1) F(2,n)
=1n n2
.1 n2
∴
=an•an+1
=
•1 n2 1 (n+1)2
=1 n(n+1)
-1 n
.1 n+1
∴Sn=(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)1 n+1
=1-
<1.1 n+1
即Sn<1.
故选C.