问题 选择题
定义:F(x,y)=yx(x>0,y>0),设数列{an}满足an=
F(n,1)
F(2,n)
,若Sn为数列{
anan+1
}的前n项和,则下列说法正确的是(  )
A.Sn>lB.Sn≥lC.Sn<1D.Sn≤l
答案

∵数列{an}满足an=

F(n,1)
F(2,n)
,∴an=
1n
n2
=
1
n2

anan+1
=
1
n2
1
(n+1)2
=
1
n(n+1)
=
1
n
-
1
n+1

Sn=(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)

=1-

1
n+1
<1.

即Sn<1.

故选C.

单项选择题
判断题