问题
解答题
数列{an}的前n项和Sn=n2,数列{bn}满足b1=2,bn+1=bn+3•2an.
(1)求数列{an},{bn}的通项公式;
(2)若cn=2n•log2bn+1(n∈N*),Tn为{cn}的前n项和,求Tn.
答案
(Ⅰ)由已知Sn=n2,当n≥2时,
an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时,a1=1适合上式,
∴an=2n-1.
由bn+1=bn+3•2n,得bn+1-bn=3•2n,
∴bn+1=3•(22n-1+22n-3+…+2)+2
=3•
+22(4n-1) 4-1
=22n+1
=22(n+1)-1,
∵b1=2满足上式,∴bn=22n-1.
(Ⅱ)∵cn=2n•log222n+1=(2n+1)•2n,
∴Tn=c1+c2+…+cn=3•2+5•22+…+(2n+1)•2n,…(8分)
2Tn=3•22+5•23+…+(2n-1)•2n+(2n+1)•2n+1,
两式相减得:-Tn=3•2+2•(22+23+…+2n)-(2n+1)•2n+1
=2+22+23+…+2n+1-(2n+1)•2n+1
=2(2n+1-1)-(2n+1)•2n+1
=-(2n-1)•2n+1-2,
∴Tn=(2n-1)•2n+1+2.…(13分)