问题 解答题

数列{an}的前n项和Sn=n2,数列{bn}满足b1=2,bn+1=bn+3•2an

(1)求数列{an},{bn}的通项公式;

(2)若cn=2nlog2bn+1(n∈N*),Tn为{cn}的前n项和,求Tn

答案

(Ⅰ)由已知Sn=n2,当n≥2时,

an=Sn-Sn-1=n2-(n-1)2=2n-1.

当n=1时,a1=1适合上式,

∴an=2n-1.

bn+1=bn+3•2n,得bn+1-bn=3•2n

bn+1=3•(22n-1+22n-3+…+2)+2

=3•

2(4n-1)
4-1
+2

=22n+1

=22(n+1)-1

∵b1=2满足上式,∴bn=22n-1

(Ⅱ)∵cn=2nlog222n+1=(2n+1)•2n

∴Tn=c1+c2+…+cn=3•2+5•22+…+(2n+1)•2n,…(8分)

2Tn=3•22+5•23+…+(2n-1)•2n+(2n+1)•2n+1

两式相减得:-Tn=3•2+2•(22+23+…+2n)-(2n+1)•2n+1

=2+22+23+…+2n+1-(2n+1)•2n+1

=2(2n+1-1)-(2n+1)•2n+1

=-(2n-1)•2n+1-2,

Tn=(2n-1)•2n+1+2.…(13分)

选择题
填空题