问题
解答题
设数列{an}的前n项和为Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是数列{log2an}的前n项和. (1)求数列{an}的通项公式; (2)求Tn; (3)求满足(1-
|
答案
(1)∵当n≥2时,Sn+1+4Sn-1=5Sn,
∴Sn+1-Sn=4(Sn-Sn-1).∴an+1=4an.
∵a1=2,a2=8,∴a2=4a1.
∴数列{an}是以a1=2为首项,公比为4的等比数列.
∴an=2•4n-1=22n-1.
(2)由(1)得:log2an=log222n-1=2n-1,
∴Tn=log2a1+log2a2+…+log2an=1+3+…+(2n-1)=
=n2.n(1+2n-1) 2
(3)(1-
)(1-1 T2
)•…•(1-1 T3
)=(1-1 Tn
)(1-1 22
)•…•(1-1 32
)1 n2
=
•22-1 22
•32-1 32
•…•42-1 42
=n2-1 n2
=1•3•2•4•3•5•…•(n-1)(n+1) 22•32•42•…•n2
.n+1 2n
令
>n+1 2n
,解得:n<2871010 2013
.4 7
故满足条件的最大正整数n的值为287.