问题 解答题
已知数列{an}的前n项和,Sn=n2+2n+1
(1)求数列{an}的通项公式an
(2)记Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,求Tn
答案

(I)当n=1时,a1=S1=4,

当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,

又a1=4不适合上式,

an=

4,   n=1
2n+1,  n≥2

(II)∵

1
a1a2
=
1
4×5

当n≥2时,

1
anan+1
=
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)

Tn=

1
4×5
+
1
2
(
1
5
-
1
7
+
1
7
-
1
9
+…+
1
2n+1
-
1
2n+3
)

=

1
20
+
1
2
(
1
5
-
1
2n+3
)=
3
20
-
1
2(2n+3)

单项选择题
单项选择题