问题
解答题
已知数列{an}的前n项和,Sn=n2+2n+1. (1)求数列{an}的通项公式an; (2)记Tn=
|
答案
(I)当n=1时,a1=S1=4,
当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,
又a1=4不适合上式,
∴an=4, n=1 2n+1, n≥2
(II)∵
=1 a1a2
,1 4×5
当n≥2时,
=1 anan+1
=1 (2n+1)(2n+3)
(1 2
-1 2n+1
),1 2n+3
∴Tn=
+1 4×5
(1 2
-1 5
+1 7
-1 7
+…+1 9
-1 2n+1
)1 2n+3
=
+1 20
(1 2
-1 5
)=1 2n+3
-3 20
.1 2(2n+3)