已知p(p≥2)是给定的某个正整数,数列{an}满足:a1=1,(k+1)ak+1=p(k-p)ak,其中k=1,2,3,…,p-1.
(I)设p=4,求a2,a3,a4;
(II)求a1+a2+a3+…+ap.
(Ⅰ)由(k+1)ak+1=p(k-p)ak得
=p×ak+1 ak
,k=1,2,3,…,p-1k-p k+1
即
=-4×a2 a1
=-6,a2=-6a1=-6;4-1 2
=-4×a3 a2
=-4-2 3
,a3=16,8 3
=-4×a4 a3
=-1,a4=-16; (3分)4-3 4
(Ⅱ)由(k+1)ak+1=p(k-p)ak
得:
=p×ak+1 ak
,k=1,2,3,…,p-1k-p k+1
即
=-p×a2 a1
,p-1 2
=-p×a3 a2
,…,p-2 3
=-p×ak ak-1
,p-(k-1) k
以上各式相乘得
=(-p)k-1×ak a1
(5分)(p-1)(p-2)(p-3)…(p-k+1) k!
∴ak=(-p)k-1×(p-1)(p-2)(p-3)…(p-k+1) k!
=(-p)k-1×
=(p-1)! k!(p-k)!
×(-p)k-1 p p! k!(p-k)!
=-(-p)k-2×
=-C kp 1 p2
(-p)k,k=1,2,3,…,p (7分)C kp
∴a1+a2+a3+…+ap=-
[1 p2
(-p)1+C 1p
(-p)2+C 2p
(-p)3+…+C 3p
(-p)p]=-C pp
[(1-p)p-1] (10分)1 p2