问题 解答题

已知p(p≥2)是给定的某个正整数,数列{an}满足:a1=1,(k+1)ak+1=p(k-p)ak,其中k=1,2,3,…,p-1.

(I)设p=4,求a2,a3,a4

(II)求a1+a2+a3+…+ap

答案

(Ⅰ)由(k+1)ak+1=p(k-p)ak

ak+1
ak
=p×
k-p
k+1
,k=1,2,3,…,p-1

a2
a1
=-4×
4-1
2
=-6,a2=-6a1=-6;

a3
a2
=-4×
4-2
3
=-
8
3
,a3=16,

a4
a3
=-4×
4-3
4
=-1,a4=-16; (3分)

(Ⅱ)由(k+1)ak+1=p(k-p)ak

得:

ak+1
ak
=p×
k-p
k+1
,k=1,2,3,…,p-1

a2
a1
=-p×
p-1
2
a3
a2
=-p×
p-2
3
,…,
ak
ak-1
=-p×
p-(k-1)
k

以上各式相乘得

ak
a1
=(-p)k-1×
(p-1)(p-2)(p-3)…(p-k+1)
k!
 (5分)

ak=(-p)k-1×

(p-1)(p-2)(p-3)…(p-k+1)
k!

=(-p)k-1×

(p-1)!
k!(p-k)!
=
(-p)k-1
p
×
p!
k!(p-k)!

=-(-p)k-2×

Ckp
=-
1
p2
Ckp
(-p)k,k=1,2,3,…,p (7分)

∴a1+a2+a3+…+ap=-

1
p2
[
C1p
(-p)1+
C2p
(-p)2+
C3p
(-p)3+…+
Cpp
(-p)p]=-
1
p2
[(1-p)p-1]
 (10分)

单项选择题 A1/A2型题
单项选择题