问题
填空题
已知数列
|
答案
设数列为{an}则由题意可得:
数列的通项公式为an =
=1 (n+1)(n+2)
-1 n+1
.1 n+2
所以Sn=a1+a2+…+an
=
-1 2
+1 3
-1 3
+… +1 4
-1 n+1 1 n+2
=
-1 2
=1 n+2
.2 2(n+2)
故答案为
.2 2(n+2)
已知数列
|
设数列为{an}则由题意可得:
数列的通项公式为an =
=1 (n+1)(n+2)
-1 n+1
.1 n+2
所以Sn=a1+a2+…+an
=
-1 2
+1 3
-1 3
+… +1 4
-1 n+1 1 n+2
=
-1 2
=1 n+2
.2 2(n+2)
故答案为
.2 2(n+2)