问题
选择题
(2013•浙江)已知x,y为正实数,则( )
A.2lgx+lgy=2lgx+2lgy
B.2lg(x+y)=2lgx•2lgy
C.2lgx•lgy=2lgx+2lgy
D.2lg(xy)=2lgx•2lgy
答案
答案:D
因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),
所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,
故选D.
(2013•浙江)已知x,y为正实数,则( )
A.2lgx+lgy=2lgx+2lgy
B.2lg(x+y)=2lgx•2lgy
C.2lgx•lgy=2lgx+2lgy
D.2lg(xy)=2lgx•2lgy
答案:D
因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),
所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,
故选D.