问题
填空题
各项为正数的数列{an},a1=a,其前n项的和为Sn,且Sn=(
|
答案
∵an>0,∴Sn>0.
当n≥2时,由Sn=(
+Sn-1
)2(n≥2),可得a1
=Sn
+Sn-1
,a
又a1=a,∴
-Sn
=Sn-1
,a
∴熟练{
}是以Sn
为首项,a
为公差的等差数列,a
∴
=Sn
+(n-1)a
=na
,a
∴Sn=n2a.
故答案为n2a.
各项为正数的数列{an},a1=a,其前n项的和为Sn,且Sn=(
|
∵an>0,∴Sn>0.
当n≥2时,由Sn=(
+Sn-1
)2(n≥2),可得a1
=Sn
+Sn-1
,a
又a1=a,∴
-Sn
=Sn-1
,a
∴熟练{
}是以Sn
为首项,a
为公差的等差数列,a
∴
=Sn
+(n-1)a
=na
,a
∴Sn=n2a.
故答案为n2a.