问题 解答题

数列{an}的前n项和Sn=n2+n,设数列{bn},bn=2an

(1)求数列{bn}的前n项和Tn

(2)求Rn=a1b1+a2b2+…+anbn

答案

(1)∵n=1时,a1=S1=2,

n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,

∴an=2n,∴bn=22n=4n

Tn=b1+b2+…+bn=41+42+…+4n

=

4(1-4n)
1-4
=
4
3
(4n-1)

(2)Rn=a1b1+a2b2+…+anbn=2×41+4×42+…+2n×4n…①

两边同乘以4得:4Rn=2×42+4×43+…+2n×4n+1…②

①-②得:-3Rn=2×41+2×42+2×43+…+2×4n-2n×4n+1

=2×

4(1-4n)
1-4
-2n×4n+1=(
8
3
-8n)4n-
8
3

∴Rn=(

8
3
n-
8
9
)4n+
8
9

问答题
单项选择题