问题
解答题
数列{an}的前n项和Sn=n2+n,设数列{bn},bn=2an.
(1)求数列{bn}的前n项和Tn;
(2)求Rn=a1b1+a2b2+…+anbn.
答案
(1)∵n=1时,a1=S1=2,
n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
∴an=2n,∴bn=22n=4n,
Tn=b1+b2+…+bn=41+42+…+4n
=
=4(1-4n) 1-4
(4n-1).4 3
(2)Rn=a1b1+a2b2+…+anbn=2×41+4×42+…+2n×4n…①
两边同乘以4得:4Rn=2×42+4×43+…+2n×4n+1…②
①-②得:-3Rn=2×41+2×42+2×43+…+2×4n-2n×4n+1
=2×
-2n×4n+1=(4(1-4n) 1-4
-8n)4n-8 3
,8 3
∴Rn=(
n-8 3
)4n+8 9
.8 9