问题
填空题
已知对任意正整数n都有a1+a2+…+an=n3,则
|
答案
∵a1+a2+a3+…+an=n3,
∴a1=1,a1+a2=8,a1+a2+a3=27,a1+a2+a3+a4=64,a1+a2+a3+a4+a5=125,
∴a2=7,a3=19,a4=37,a5=61,an=3n(n-1)+1,
∴a100=3×100×99+1,
∴
+1 a2-1
+…+1 a3-1
=1 a100-1
+1 6
+1 18
+1 36
+…+1 60
,1 3×100×99
=
( 1 3
+1 2
+1 6
+1 12
+…+1 20
),1 100×99
=
(1-1 3
+1 2
-1 2
+1 3
-1 3
+1 4
-1 4
+…+1 5
-1 99
),1 100
=
(1-1 3
),1 100
=
.33 100
故答案为:33 100