问题
填空题
数列{an}中,an=
|
答案
设数列bn的前n项和为Sn
由题意可得an=
=1+2+3+…+n n
=n(n+1) 2 n n+1 2
∴an+1=n+2 2
∴bn=
=1 anan+1
=1 n+1 2 n+2 2
=4(4 (n+1)(n+2)
-1 n+1
)1 n+2
∴Sn=b1+b2+…+bn-1+bn
=4(
-1 2
+ 1 3
-1 3
…+1 4
-1 n
+1 n+1
-1 n+1
)1 n+2
=4(
-1 2
)1 n+2
=2n n+2
∴bn=
的前n项和为1 anan+1
.2n n+2