问题 填空题
数列{an}中,an=
1+2+3+…+n
n
bn=
1
anan+1
的前n项和为______.
答案

设数列bn的前n项和为Sn

由题意可得an=

1+2+3+…+n
n
=
n(n+1)
2
n
=
n+1
2

an+1=

n+2
2

bn=

1
anan+1
=
1
n+1
2
n+2
2
=
4
(n+1)(n+2)
=4(
1
n+1
-
1
n+2
)

∴Sn=b1+b2+…+bn-1+bn

=4(

1
2
-
1
3
1
3
-
1
4
…+
1
n
-
1
n+1
+
1
n+1
-
1
n+2
)

=4(

1
2
-
1
n+2
)

=

2n
n+2

bn=

1
anan+1
的前n项和为
2n
n+2

单项选择题 A1型题
多项选择题