问题 解答题
已知数列{an}的各项均为正数,前n项和为Sn,且Sn=
an(an+1)
2
(n∈N*)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
2Sn
Tn=b1+b2+…+bn
,求Tn
答案

(Ⅰ)∵Sn=

an(an+1)
2

2Sn=an2+an,①

2Sn-1=an-12+an-1

   
(a≥2),②

由①-②得:2an=an2-an-12+an-an-1,(2分)  

(an+an-1)(an-an-1-1)=0,

∵an>0,∴an-an-1=1

   
(n≥2),

又∵a1=S1=

a1(a1+1)
2

∴a1=1,∴an=a1+(n-1)d=n

   
(n≥2),(5分)

当n=1时,a1=1,符合题意.

故an=n.(6分)

(Ⅱ)∵Sn=

an(an+1)
2
=
n(n+1)
2

bn=

1
n(n+1)
=
1
n
-
1
n+1
,(10分)

Tn=1-

1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
.(12分)

填空题
单项选择题