问题
解答题
已知数列{an}的各项均为正数,前n项和为Sn,且Sn=
(Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)∵Sn=
,an(an+1) 2
∴2Sn=an2+an,①
2Sn-1=an-12+an-1
(a≥2),②
由①-②得:2an=an2-an-12+an-an-1,(2分)
(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1
(n≥2),
又∵a1=S1=
,a1(a1+1) 2
∴a1=1,∴an=a1+(n-1)d=n
(n≥2),(5分)
当n=1时,a1=1,符合题意.
故an=n.(6分)
(Ⅱ)∵Sn=
=an(an+1) 2
,n(n+1) 2
∴bn=
=1 n(n+1)
-1 n
,(10分)1 n+1
故Tn=1-
+1 2
-1 2
+…+1 3
-1 n
=1-1 n+1
=1 n+1
.(12分)n n+1