问题
填空题
数列{an}的通项an=n(cos2
|
答案
∵an=n(cos2
-sin2nπ 3
)=ncosnπ 3
π2n 3
S30=[1×(-
)+2× (-1 2
)+3×1]+[4×(-1 2
)+5×(-1 2
)+6×1]+…+[28×(-1 2
)+29×(-1 2
)+30×1]1 2
=
×10=153 2
故答案为15
数列{an}的通项an=n(cos2
|
∵an=n(cos2
-sin2nπ 3
)=ncosnπ 3
π2n 3
S30=[1×(-
)+2× (-1 2
)+3×1]+[4×(-1 2
)+5×(-1 2
)+6×1]+…+[28×(-1 2
)+29×(-1 2
)+30×1]1 2
=
×10=153 2
故答案为15