问题
解答题
已知数列{an}的前n项和为sn,且an=n•3n,求sn.
答案
∵sn=1•3+2•32+…+n•3n
∴3sn= 1•32+2•33+…+(n-1)•3n+n•3n+1
两式相减可得,-2sn=3+32+33+…+3n-n•3n+1=
-n•3n+13(1-3n) 1-3
∴sn=3+(2n-1)•3n+1 4
已知数列{an}的前n项和为sn,且an=n•3n,求sn.
∵sn=1•3+2•32+…+n•3n
∴3sn= 1•32+2•33+…+(n-1)•3n+n•3n+1
两式相减可得,-2sn=3+32+33+…+3n-n•3n+1=
-n•3n+13(1-3n) 1-3
∴sn=3+(2n-1)•3n+1 4