已知数列{an}的前n项和为Sn,且Sn=2-
(I)求证:
(II)求an及Sn; (III)求证:
|
( I)Sn=2-
an(n∈N*),(1)Sn+1=2-n+2 n
an+1,(2)(2分)n+3 n+1
(2)-(1),得an+1=
an-n+2 n
an+1,∴n+3 n+1
=an+1 an
.(3分)n+1 2n
( II)当n=1时,a1=S1=2-
a1,a1=1+2 1
; (4分)1 2
由( I),得an=a1•
•a2 a1
•a3 a2
•…•a4 a3
=an an-1
•1 2
•2 2×1
•3 2×2
•…•4 2×3
=n 2(n-1) n 2n
即an=
(7分)n 2n
将an=
代入Sn=2-n 2n
an(n∈N*),得Sn=n+2 n
.(8分)2n+1-n-2 2n
( III)由an=
,则即证(n 2n
)2+(1 2
)2+(2 22
)2+…+(3 23
)2<n 2n 49 64
下证:当n≥4,n∈N*时,2n≥n2.
①当n=4时,24=42,成立;当n=5时,25>52,成立; (9分)
②假设当n=k(k≥4,k∈N*)时,成立,即2k≥k2,则
当n=k+1时,2k+1≥2k2,令f(k)=2k2-(k+1)2=k2-2k-1,k≥4,k∈N*,当k=4时有最小值7,故2k2>(k+1)2,
∴2k+1≥(k+1)2,即n=k+1成立;
由①②得结论成立.(11分)
于是,(
)2<k 2k
.1 2k
令k=4,5,6,…,n,各式相加,得(
)2+(4 24
)2+(5 25
)2+…+(6 26
)2<n 2n
-1 8
,1 2n
又(
)2+(1 2
)2+(2 22
)2=3 23
,41 64
两式相加,得(
)2+(1 2
)2+(2 22
)2+…+(3 23
)2<n 2n
-49 64
<1 2n
.(12分)49 64