问题 解答题
已知数列{an}的前n项和为Sn,且Sn=2-
n+2
n
an(n∈N*)

(I)求证:
an+1
an
=
n+1
2n

(II)求an及Sn
(III)求证:
a21
+
a22
+
a23
+…+
a2n
49
64
答案

( I)Sn=2-

n+2
n
an(n∈N*),(1)Sn+1=2-
n+3
n+1
an+1
,(2)(2分)

(2)-(1),得an+1=

n+2
n
an-
n+3
n+1
an+1,∴
an+1
an
=
n+1
2n
.(3分)

( II)当n=1时,a1=S1=2-

1+2
1
a1a1=
1
2
;                          (4分)

由( I),得an=a1

a2
a1
a3
a2
a4
a3
•…•
an
an-1
=
1
2
2
2×1
3
2×2
4
2×3
•…•
n
2(n-1)
=
n
2n

an=

n
2n
                                             (7分)

an=

n
2n
代入Sn=2-
n+2
n
an(n∈N*)
,得Sn=
2n+1-n-2
2n
.(8分)

( III)由an=

n
2n
,则即证(
1
2
)2+(
2
22
)2+(
3
23
)2+…+(
n
2n
)2
49
64

下证:当n≥4,n∈N*时,2n≥n2

①当n=4时,24=42,成立;当n=5时,25>52,成立;              (9分)

②假设当n=k(k≥4,k∈N*)时,成立,即2k≥k2,则

当n=k+1时,2k+1≥2k2,令f(k)=2k2-(k+1)2=k2-2k-1,k≥4,k∈N*,当k=4时有最小值7,故2k2>(k+1)2

∴2k+1≥(k+1)2,即n=k+1成立;

由①②得结论成立.(11分)

于是,(

k
2k
)2
1
2k

令k=4,5,6,…,n,各式相加,得(

4
24
)2+(
5
25
)2+(
6
26
)2+…+(
n
2n
)2
1
8
-
1
2n

(

1
2
)2+(
2
22
)2+(
3
23
)2=
41
64

两式相加,得(

1
2
)2+(
2
22
)2+(
3
23
)2+…+(
n
2n
)2
49
64
-
1
2n
49
64
.(12分)

单项选择题
单项选择题