问题 解答题
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=
S2
b2

(1)求an与bn
(2)求
1
S1
+
1
S2
+…+
1
Sn
答案

(1)由已知可得

q+3+a2=12
q=
3+a2
q

解得,q=3或q=-4(舍去),a2=6

∴an=3n,bn=3n-1

(2)证明:Sn=

n×(3+3n)
2
1
Sn
=
2
n(3+3n)
=
2
3
(
1
n
-
1
n+1
)

1
S1
+…+
1
Sn
=
2
3
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)
=
2
3
(1-
1
n+1
)

选择题
单项选择题