问题
解答题
设数列{an}的前n项和为Sn,a1=2,Sn=nan-n(n-1). (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足:an=
(Ⅲ)令cn=
|
答案
(I)n≥2时,Sn=nan-n(n-1),
∴Sn-1=(n-1)an-1-(n-1)(n-2),
两式相减得an=nan-(n-1)an-1-2(n-1),则(n-1)an=(n-1)an-1+2(n-1),
∴an=an-1+2
∴{an}是首项为2,公差为2的等差数列,
∴an=2n;
(II)∵an=
+b 1 3+1
+b 2 3×2+1
+…+b 3 3×3+1
,bn 3n+1
∴an-1=
+b 1 3+1
+b 2 3×2+1
+…+b 3 3×3+1
,b n-1 3(n-1)+1
∴当n≥2时,有an-an-1=
,b n 3n+1
由(I)得an-an-1=2,
∴bn=2(3n+1),
而当n=1时,也成立,
∴数列{bn}的通项公式bn=2(3n+1)(n∈N*),
(III)cn=
=a nb n 4
=3n2+n,2n•2(3n+1) 4
∴数列{cn}的前n项和Tn=3(12+22+32+…+n2)+(1+2+3+…+n)
=3×
n(n+1)(2n+1)+1 6
n(n+1)1 2
=
n(n+1)(4n+5).1 6