设数列{an}是公差为d的等差数列,其前n项和为Sn. (1)已知a1=1,d=2, (ⅰ)求当n∈N*时,
(ⅱ)当n∈N*时,求证:
(2)是否存在实数a1,使得对任意正整数n,关于m的不等式am≥n的最小正整数解为3n-2?若存在,则求a1的取值范围;若不存在,则说明理由. |
(1)(ⅰ)∵a1=1,d=2,
∴Sn=na1+
=n2,n(n-1)d 2
=n+Sn+64 n
≥264 n
=16,n× 64 n
当且仅当n=
,即n=8时,上式取等号.故64 n
的最小值是16.(4分)Sn+64 n
(ⅱ)证明:由(ⅰ)知Sn=n2,当n∈N*时,
=n+1 SnSn+2
=n+1 n2(n+2)2
[1 4
-1 n2
],(6分)1 (n+2)2
+2 S1S3
+…+3 S2S4
=n+1 SnSn+2
(1 4
-1 12
)+1 32
(1 4
-1 22
)+…+1 42
[1 4
-1 n2
]=1 (n+2)2
(1 4
+1 12
+…+1 22
)-1 n2
[1 4
+1 32
+…+1 52
+1 (n+1)2
]=1 (n+2)2
[1 4
+1 12
-1 22
-1 (n+1)2
],(8分)1 (n+2)2
∵
+1 (n+1)2
>0,∴1 (n+2)2
+2 S1S3
+…+3 S2S4
<n+1 SnSn+2
(1 4
+1 12
)<1 22
.(9分)5 16
(2)假设对∀n∈N*,关于m的不等式am=a1+(m-1)d≥n的最小正整数解为cn=3n-2,
当n=1时,a1+(c1-1)d=a1≥1;(10分)
当n≥2时,恒有
,即a1+(cn-1)d≥n a1+(cn-2)d<n
,(3d-1)n+(a1-3d)≥0 (3d-1)n+(a1-4d)<0
从而
⇔d=3d-1≥0 (3d-1)×2+(a1-3d)≥0 3d-1≤0 (3d-1)×2+(a1-4d)<0
,1≤a1<1 3
.(12分)4 3
当d=
,1≤a1<1 3
时,对∀n∈N*,且n≥2时,当正整数m<cn时,4 3
有a1+
<a1+m-1 3
且a1+cn-1 3
>n.(13分)cn-1 3
所以存在这样的实数a1符合题意且a1的取值范围是[1,
).4 3