问题
解答题
已知数列{an}中,a1=3,an+1=2an-1(n≥1,n∈N) (1)求数列{an}的通项公式; (2)设bn=
|
答案
(1)由an+1=2an-1,得an+1-1=2(an-1),
又a1-1=2,所以{an-1}是以2为首项,2为公比的等比数列
∴an-1=2n,即an=2n+1;
(2)证明:bn=
=2n anan+1
=2n (2n+1)(2n+1+1)
-1 2n+1 1 2n+1+1
=∴Sn=(
-1 21+1
)+(1 22+1
-1 22+1
)+…+(1 23+1
-1 2n+1
)1 2n+1+1
-1 3 1 2n+1+1
∵
>0,1 2n+1+1
∴Sn<
.1 3