问题
解答题
已知数列{an}满足a1=1,a2=
(1)求a3,a4,a5,a6的值及数列{an}的通项公式; (2)设bn=a2n-1•a2n(n∈N*),求数列{bn}的前n项和Sn. |
答案
(1)a3=3,a4=
,a5=5,a6=1 4 1 8
当n为奇数时,an+2=an+2
所以a2n-1=2n-1(3分)
当n为偶数时,an+2=
an即a2n=a2•(1 2
) n-1=(1 2
)n(5分)1 2
因此,数列an的通项公式为an=
(6分)n,n=2k-1 (
)1 2
,n=2kn 2
(2)因为bn=(2n-1)•(
)nSn=1•1 2
+3•(1 2
)2+5•(1 2
)3++(2n-3)•(1 2
)n-1+(2n-1)•(1 2
)n1 2
Sn=1•(1 2
)2+3•(1 2
)3+5•(1 2
)4++(2n-3)•(1 2
)n+(2n-1)•(1 2
)n+11 2
两式相减得
Sn=1•1 2
+2[(1 2
)2++(1 2
)n]-(2n-1)•(1 2
)n-1(8分)1 2
=
+1 2
-(2n-1)•(2[1-(
)n+1]1 2 1- 1 2
)n+1=1 2
-(2n+3)(3 2
)n+11 2
∴Sn=3-(2n+3)•(
)n(12分)1 2