问题
解答题
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知bn>0(n∈N*),a1=b1=1,a2+b3=a3,S5=5(T3+b2). (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)求和:
|
答案
(Ⅰ)设{an}的公差为d,数列{bn}的公比为q,则
∵a1=b1=1,a2+b3=a3,S5=5(T3+b2),
∴q2=d,1+2d=1+2q+q2,
∴q2-2q=0,
∵q≠0,∴q=2,∴d=4
∴an=4n-3,bn=2n-1;
(Ⅱ)∵
=bn TnTn+1
=bn+1 qTnTn+1
(1 2
-1 Tn
)1 Tn+1
∴
+b1 T1T2
+…+b2 T2T3
=bn TnTn+1
(1 2
-1 T1
+1 T2
-1 T2
+…+1 T3
-1 Tn
)1 Tn+1
=
(1 2
-1 T1
)=1 Tn+1
(1-1 2
).2 2n+1-1