问题 解答题
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知bn>0(n∈N*),a1=b1=1,a2+b3=a3,S5=5(T3+b2).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求和:
b1
T1T2
+
b2
T2T3
+…+
bn
TnTn+1
答案

(Ⅰ)设{an}的公差为d,数列{bn}的公比为q,则

∵a1=b1=1,a2+b3=a3,S5=5(T3+b2),

∴q2=d,1+2d=1+2q+q2

∴q2-2q=0,

∵q≠0,∴q=2,∴d=4

∴an=4n-3,bn=2n-1

(Ⅱ)∵

bn
TnTn+1
=
bn+1
qTnTn+1
=
1
2
1
Tn
-
1
Tn+1

b1
T1T2
+
b2
T2T3
+…+
bn
TnTn+1
=
1
2
1
T1
-
1
T2
+
1
T2
-
1
T3
+…+
1
Tn
-
1
Tn+1

=

1
2
1
T1
-
1
Tn+1
)=
1
2
(1-
2
2n+1-1
).

问答题 简答题
判断题