问题 选择题
现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则
1
a1
+
1
a2
+
1
a3
+…
1
a2012
=(  )
A.
2012
2013
B.
4024
2013
C.
2011
2012
D.
4022
2012
答案

由a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,

令m=1可得:an+1=an+a1+n,∴an+1-an=1+n,

∴an=a1+(a2-a1)+…+(an-an-1

=1+2+…+n=

n(n+1)
2

an=

n(n+1)
2

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
).

1
a1
+
1
a2
+
1
a3
+…
1
a2012
=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
2012
-
1
2013
)]

=2(1-

1
2013
)=
4024
2013

故选B.

单项选择题
选择题