问题
选择题
现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则
|
答案
由a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,
令m=1可得:an+1=an+a1+n,∴an+1-an=1+n,
∴an=a1+(a2-a1)+…+(an-an-1)
=1+2+…+n=
,n(n+1) 2
∴an=
.n(n+1) 2
∴
=1 an
=2(2 n(n+1)
-1 n
).1 n+1
∴
+1 a1
+1 a2
+…1 a3
=2[(1-1 a2012
)+(1 2
-1 2
)+…+(1 3
-1 2012
)]1 2013
=2(1-
)=1 2013
.4024 2013
故选B.