问题 解答题
设数列{an}是公差为d的等差数列,其前n项和为Sn.已知a1=1,d=2,
①求当n∈N*时,
Sn+64
n
的最小值;
②证明:由①知Sn=n2,当n∈N*时,
2
s1s3
+
3
s2s4
…+
n+1
SnSn+2
5
16
答案

①∵a1=1,d=2,∴Sn=na1+

n(n-1)
2
d=n2

Sn+64
n
=
n2+64
n
=n+
64
n
2
64
n
=16

当且仅当n=

64
n
即n=8时,上式取等号,

Sn+64
n
的最小值是16;

②证明:由①知Sn=n2,当n∈N*时,

n+1
SnSn+2
=
n+1
n2(n+2)2
=
1
4
[
1
n2
-
1
(n+2)2
]

2
s1s3
+
3
s2s4
…+
n+1
SnSn+2

=

1
4
[
1
12
-
1
32
+
1
22
-
1
42
+
1
32
-
1
52
+…+
1
n2
-
1
(n+2)2
]

=

1
4
[
1
12
+
1
22
-
1
(n+1)2
-
1
(n+2)2
],

1
(n+1)2
+
1
(n+2)2
>0

2
s1s3
+
3
s2s4
…+
n+1
SnSn+2
1
4
(
1
12
+
1
22
)
=
5
16

故命题得证.

选择题
填空题