问题
解答题
设数列{an}是公差为d的等差数列,其前n项和为Sn.已知a1=1,d=2, ①求当n∈N*时,
②证明:由①知Sn=n2,当n∈N*时,
|
答案
①∵a1=1,d=2,∴Sn=na1+
d=n2,n(n-1) 2
=Sn+64 n
=n+n2+64 n
≥264 n
=16n× 64 n
当且仅当n=
即n=8时,上式取等号,64 n
故
的最小值是16;Sn+64 n
②证明:由①知Sn=n2,当n∈N*时,
=n+1 SnSn+2
=n+1 n2(n+2)2
[1 4
-1 n2
],1 (n+2)2
∴
+2 s1s3
…+3 s2s4 n+1 SnSn+2
=
[1 4
-1 12
+1 32
-1 22
+1 42
-1 32
+…+1 52
-1 n2
]1 (n+2)2
=
[1 4
+1 12
-1 22
-1 (n+1)2
],1 (n+2)2
∵
+1 (n+1)2
>01 (n+2)2
∴
+2 s1s3
…+3 s2s4
<n+1 SnSn+2
(1 4
+1 12
)=1 22 5 16
故命题得证.