问题 解答题
已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.
答案

(1)由已知可得,

OP
=
1
2
(
OM
+
ON
),

∴P是MN的中点,有x1+x2=1.

∴y1+y2=f(x1)+f(x2

=log3

3
x1
1-x1
+log3
3
x2
1-x2

=log3(

3
x1
1-x1
3
x2
1-x2
)

=log3

3x1x2
(1-x1)(1-x2)

=log3

3x1x2
1-(x1+x2)+x1x2

=log3

3x1x2
1-1+x1x2
=1.

(2)由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1

Sn=f(

1
n
)+f(
2
n
)++f(
n-1
n
),

Sn=f(

n-1
n
)++f(
2
n
)+f(
1
n
),

相加得

2Sn=[f(

1
n
)+f(
n-1
n
)]+[(
2
n
)+f(
n-2
n
)]++[f(
n-1
n
)+f(
1
n
)]

=

1+1++1
(n-1)个1

=n-1

Sn=

n-1
2

(3)当n≥2时,

an=

1
4(Sn+1)(Sn+1+1)
=
1
n+1
2
n+2
2
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

又当n=1时,

a1=

1
6
=
1
2
-
1
3

an=

1
n+1
-
1
n+2

Tn=(

1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)=
n
2(n+2)

由于Tn<m(Sn+1+1)对一切n∈N*都成立,

m>

Tn
Sn+1+1
=
n
(n+2)2
=
1
n+
4
n
+4

n+

4
n
≥4,当且仅当n=2时,取“=”,

1
n+
4
n
+4
1
4+4
=
1
8

因此m>

1
8

综上可知,m的取值范围是(

1
8
,+∞).

改错题
单项选择题