已知函数f(x)=log3
(Ⅰ)求证:y1+y2为定值; (Ⅱ)若Sn=f(
(Ⅲ)已知an=
|
(1)由已知可得,
=OP
(1 2
+OM
),ON
∴P是MN的中点,有x1+x2=1.
∴y1+y2=f(x1)+f(x2)
=log3
+log3
x13 1-x1
x23 1-x2
=log3(
•
x13 1-x1
)
x23 1-x2
=log33x1x2 (1-x1)(1-x2)
=log33x1x2 1-(x1+x2)+x1x2
=log3
=1.3x1x2 1-1+x1x2
(2)由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1
Sn=f(
)+f(1 n
)++f(2 n
),n-1 n
Sn=f(
)++f(n-1 n
)+f(2 n
),1 n
相加得
2Sn=[f(
)+f(1 n
)]+[(n-1 n
)+f(2 n
)]++[f(n-2 n
)+f(n-1 n
)]1 n
=1+1++1 (n-1)个1
=n-1
∴Sn=
.n-1 2
(3)当n≥2时,
an=
=1 4(Sn+1)(Sn+1+1)
=1 4×
•n+1 2 n+2 2
=1 (n+1)(n+2)
-1 n+1
.1 n+2
又当n=1时,
a1=
=1 6
-1 2
.1 3
∴an=
-1 n+1
.1 n+2
Tn=(
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n+1
)=1 n+2
.n 2(n+2)
由于Tn<m(Sn+1+1)对一切n∈N*都成立,
m>
=Tn Sn+1+1
=n (n+2)2 1 n+
+44 n
∵n+
≥4,当且仅当n=2时,取“=”,4 n
∴
≤1 n+
+44 n
=1 4+4 1 8
因此m>
.1 8
综上可知,m的取值范围是(
,+∞).1 8