问题
解答题
设正项数列{an}的前n项和为Sn,满足Sn=n2. (1)求{an}的通项公式; (2)设bn=
(3)是否存在自然数m,使得
|
答案
(1)∵Sn=n2,∴当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=2n-1
a1=1满足上式,∴an=2n-1;
(2)由bn=
=1 (an+1)(an+1+1)
•1 4
=1 n(n+1)
(1 4
-1 n
)1 n+1
∴Tn=
(1-1 4
+1 2
-1 2
+…+1 3
-1 n
)=1 n+1
(1-1 4
)=1 n+1
.n 4(n+1)
(3)Tn+1-Tn=
-n+1 4(n+2)
=n 4(n+1)
>0,∴{Tn}单调递增,∴Tn≥T1=1 4(n+1)(n+2) 1 8
∵Tn=
(1-1 4
)<1 n+1
,∴1 4
≤Tn<1 8 1 4
使得
<Tn<m-2 4
对一切n∈N*恒成立,则m 5
≤1 4 m 5
<m-2 4 1 8
∴
≤m<5 4 5 2
∵m是自然数,∴m=2.