已知数列{an}的前n项和Sn与通项an之间满足关系Sn=
(I)求数列{an}的通项公式; (II)设f(x)=log3x,bn=f(a1)+f(a2)+L+f(an),Tn=
(III)若cn=an•f(an),求{cn}的前n项和an. |
(I)n=1时,a1=S1=
-1 2
a1,∴a1=1 2
(1分)1 3
n≥2时,an=Sn-Sn-1=
-1 2
an-1 2
+1 2
an-1,∴an=1 2
an-1,1 3
即数列{an}是首项为
,公比为1 3
的等比数列 (3分)1 3
故an=(
)n (4分)1 3
(II)由已知可得:f(an)=-n,则bn=f(a1)+f(a2)+…+f(an)=-1-2-…-n=-
(5分)n(n+1) 2
∴
=-2(1 bn
-1 n
) (6分)1 n+1
∴Tn=
+1 b1
+…+1 b2
=2[(1-1 bn
)+(1 2
-1 2
)+…+(1 3
-1 n
)]=-2(1-1 n+1
)1 n+1
∴T2012=-
(8分)4024 2013
(III)由题意:cn=an•f(an)=-n×(
)n,故{cn}的前n项和un=-[1×(1 3
)1+2×(1 3
)2+…+n×(1 3
)n]①1 3
∴
un=-[1×(1 3
)2+2×(1 3
)3+…+n×(1 3
)n+1]②1 3
①-②可得:
un=-[(2 3
)1+(1 3
)2+(1 3
)3+…+(1 3
)n-n×(1 3
)n+1](12分)1 3
∴
un=-2 3
[1-(1 2
)n]+n×(1 3
)n+11 3
∴un=-
+3 4
×(3 4
)n+1 3
n×(3 2
)n+1 (14分)1 3