问题
解答题
已知数列{an}满足a1=2,an+1=
(1)设bn=
(2)设cn=an•(n2+1)-1,dn=
|
答案
(1)由bn=
,bn+1=2n an
,得到an=2n+1 an+1
,an+1=2n bn
,b1=2n+1 bn+1
=1.2 a1
代入an+1=
,化为bn+1-bn=n+2n+1an (n+
)an+2n1 2
.1 2
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+
+(n-2)+1 2
+…+1+1 2
+11 2
=
+n(n-1) 2
+1n-1 2
=
.n2+1 2
(2)由(1)可得an=
=2n bn
,2n+1 n2+1
∴cn=
×(n2+1)-1=2n+1-1.2n+1 n2+1
∴dn=
=2n cncn+1
=2n (2n+1-1)(2n+2-1)
(1 2
-1 2n+1-1
),1 2n+2-1
∴Sn=
[(1 2
-1 22-1
)+(1 23-1
-1 23-1
)+…+(1 24-1
-1 2n+1-1
)]1 2n+2-1
=
(1 2
-1 3
)1 2n+2-1
=
-1 6
.1 2n+3-2