问题 解答题
已知数列{an}满足a1=2,an+1=
2n+1an
(n+
1
2
)an+2n
,n∈N*

(1)设bn=
2n
an
,求数列bn的通项公式

(2)设cn=an•(n2+1)-1dn=
2n
cncn+1
,求数列{dn}的前n项和Sn
答案

(1)由bn=

2n
an
bn+1=
2n+1
an+1
,得到an=
2n
bn
an+1=
2n+1
bn+1
b1=
2
a1
=1

代入an+1=

2n+1an
(n+
1
2
)an+2n
,化为bn+1-bn=n+
1
2

∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1

=(n-1)+

1
2
+(n-2)+
1
2
+…+1+
1
2
+1

=

n(n-1)
2
+
n-1
2
+1

=

n2+1
2

(2)由(1)可得an=

2n
bn 
=
2n+1
n2+1

cn=

2n+1
n2+1
×(n2+1)-1=2n+1-1.

dn=

2n
cncn+1
=
2n
(2n+1-1)(2n+2-1)
=
1
2
(
1
2n+1-1
-
1
2n+2-1
)

∴Sn=

1
2
[(
1
22-1
-
1
23-1
)+(
1
23-1
-
1
24-1
)+…+(
1
2n+1-1
-
1
2n+2-1
)]

=

1
2
(
1
3
-
1
2n+2-1
)

=

1
6
-
1
2n+3-2

填空题
填空题