问题
解答题
已知数列{an}的各项均为正数,且满足a2=5,an+1=an2-2nan+2,(n∈N*).
(1)推测{an}的通项公式;
(2)若bn=2n-1,令cn=an+bn,求数列cn的前n项和Tn.
答案
(1)由a2=5,an+1=an2-2nan+2,an>0(n∈N*)知:
a2=a12-2a1+2,故 a1=3,
a3=a22-4a2+2=7,
推测an=2n+1.(n∈N*)①;
(2)由(1)知,cn=an+bn=(2n+1)+2n-1.
Tn=(a1+b1)+(a2+b2)+(a3+b3)+…+(an+bn)
=(a1+a2+a3…+an)+(b1+b2+b3+…+bn)
=[3+5+7+…+(2n+1)]+(1+2+4+…+2n-1)
=
+n[3+(2n+1)] 2 1•(1-2n) 1-2
=(n2+2n)+(2n-1)=2n+n2+2n-1.
所以数列{cn}的前n项和Tn为2n+n2+2n-1.